On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
نویسندگان
چکیده
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G′/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions. Keywords—New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G′/G)-Expansion Method, Traveling Wave Solutions
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملExact travelling wave solutions for the modified Novikov equation ∗
which was discovered in a symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity. By using the perturbation symmetry approach [7], Novikov found the first few symmetries and a scalar Lax pair for Eq. (1), then proved that it is integrable [9]. Hone and Wang [5] gave a matrix Lax pair for the Novikov equation and found its infinitely many conserved quantities, as well as a...
متن کاملExact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کامل